147 research outputs found

    Reservoir architecture and heterogeneity distribution in floodplain sandstones: Key features in outcrop, core and wireline logs

    Get PDF
    Exploration and production from formations deposited in low-gradient fluvial systems is typically associated with a high degree of uncertainty; a reflection of the inherent characteristics of these environments, notably the dominance of non-reservoir floodplain fines, rapid lateral facies variations and associated heterogeneities at different scales. However, for a field development to be successful it becomes crucial to know the location, geometry, dimensions and connectivity of the most permeable facies, related to the main channel and the associated proximal overbank deposits (crevasse-splay complexes). With the aim of addressing this problem, a multi-disciplinary study is presented, combining outcrop data, high-resolution sedimentological descriptions and advanced visualization techniques based on Digital Outcrop Models. This is compared with subsurface data from behind the outcrop (core, gamma ray and borehole image logs). The Mudstone–Sandstone Unit of the Triassic Red Beds of Iberian Meseta formation in south-central Spain was selected for the present study. The unit is characterized by the lateral and vertical stacking of four architectural elements: (i) channelized sandstone bodies; (ii) asymmetrical sigmoidal-shaped sandstone bodies; (iii) lobe-shaped to sheet-like sandstone bodies; and (iv) sheet-like mudstones. These elements represent meandering channel, crevasse-channel-splay and floodplain sub-environments, comprising a distal, low-gradient meandering fluvial system. Together with well-documented outcrop and core facies, calibrated log responses are also presented for the channel bodies (bell-shape Gamma Ray profile, random azimuths and low to high dip angles), the crevasse-splay bodies (funnel-shape Gamma Ray profile, unidirectional azimuths and low dip angles) and the floodplain deposits (serrated Gamma Ray profile, unidirectional azimuths and very low dip angles). The full integration of outcrop and subsurface datasets has enabled generation of a robust conceptual model with predictive potential when establishing the three-dimensional stacking of facies, distribution of heterogeneities, and the connectivity between reservoir rock geobodies of primary (channel) and secondary (crevasse complex) interest in this type of fluvial reservoir.Fil: Yeste, Luis Miguel. Universidad de Granada. Facultad de Ciencias. Departamento de Estratigrafía y Paleontología.; EspañaFil: Varela, Augusto Nicolás. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Viseras, César. Universidad de Granada. Facultad de Ciencias. Departamento de Estratigrafía y Paleontología.; EspañaFil: Mcdougall, Neil D.. No especifíca;Fil: García García, Fernando. Universidad de Granada. Facultad de Ciencias. Departamento de Estratigrafía y Paleontología.; Españ

    Safety outcomes during pediatric GH therapy: final results from the prospective GeNeSIS observational program

    Get PDF
    CONTEXT: Safety concerns regarding premature mortality, diabetes, neoplasia and cerebrovascular disease in association with growth hormone (GH) therapy have been raised. OBJECTIVE: To assess incidence of key safety outcomes. DESIGN: Prospective, multinational, observational study (1999-2015). SETTING: 22,311 GH-treated children from 827 investigative sites in 30 countries. PATIENTS: Children with growth disorders. INTERVENTIONS: GH treatment. MAIN OUTCOME MEASURES: Standardized mortality (SMR) and incidence (SIR) ratios with 95% confidence intervals (CI) for mortality, diabetes, and primary cancer, using general population registries. RESULTS: Predominant short stature diagnoses were GH deficiency (63%), idiopathic short stature (13%), and Turner syndrome (8%), with mean±SD follow-up of 4.2±3.2 years (∼92,000 person-years [PY]). Forty-two deaths occurred in patients with follow-up, with SMR (95% CI) of 0.61 (0.44-0.82); the SMR was elevated for patients with cancer-related organic GH deficiency (5.87 [3.21-9.85]). Based on 18 cases, Type 2 diabetes (T2DM) risk was elevated (SIR 3.77 [2.24-5.96]), but 72% had risk factors. In patients without cancer history, 14 primary cancers were observed (SIR 0.71 [0.39-1.20]). Second neoplasms occurred in 31/622 (5.0%) cancer survivors (10.7 [7.5-15.2] cases/1000 PY), and intracranial tumor recurrences in 67/823 (8.1%) tumor survivors (16.9 [13.3-21.5] cases/1000 PY). All 3 hemorrhagic stroke cases had risk factors. CONCLUSIONS: GeNeSIS data support the favourable safety profile of pediatric GH treatment. Overall risk for death or primary cancer was not elevated in GH-treated children, and no hemorrhagic strokes occurred in patients without risk factors. T2DM incidence was elevated compared to the general population, but most cases had diabetes risk factors

    Identification of FBXL4 as a Metastasis Associated Gene in Prostate Cancer

    Get PDF
    Prostate cancer is the most common cancer among western men, with a significant mortality and morbidity reported for advanced metastatic disease. Current understanding of metastatic disease is limited due to difficulty of sampling as prostate cancer mainly metastasizes to bone. By analysing prostate cancer bone metastases using high density microarrays, we found a common genomic copy number loss at 6q16.1–16.2, containing the FBXL4 gene, which was confirmed in larger series of bone metastases by fluorescence in situ hybridisation (FISH). Loss of FBXL4 was also detected in primary tumours and it was highly associated with prognostic factors including high Gleason score, clinical stage, prostate-specific antigen (PSA) and extent of disease, as well as poor patient survival, suggesting that FBXL4 loss contributes to prostate cancer progression. We also demonstrated that FBXL4 deletion is detectable in circulating tumour cells (CTCs), making it a potential prognostic biomarker by ‘liquid biopsy’. In vitro analysis showed that FBXL4 plays a role in regulating the migration and invasion of prostate cancer cells. FBXL4 potentially controls cancer metastasis through regulation of ERLEC1 levels. Therefore, FBXL4 could be a potential novel prostate cancer suppressor gene, which may prevent cancer progression and metastasis through controlling cell invasion

    ILC3 function as a double-edged sword in inflammatory bowel diseases

    Get PDF
    Inflammatory bowel diseases (IBD), composed mainly of Crohn’s disease (CD) and ulcerative colitis (UC), are strongly implicated in the development of intestinal inflammation lesions. Its exact etiology and pathogenesis are still undetermined. Recently accumulating evidence supports that group 3 innate lymphoid cells (ILC3) are responsible for gastrointestinal mucosal homeostasis through moderate generation of IL-22, IL-17, and GM-CSF in the physiological state. ILC3 contribute to the progression and aggravation of IBD while both IL-22 and IL-17, along with IFN-γ, are overexpressed by the dysregulation of NCR− ILC3 or NCR+ ILC3 function and the bias of NCR+ ILC3 towards ILC1 as well as regulatory ILC dysfunction in the pathological state. Herein, we feature the group 3 innate lymphoid cells’ development, biological function, maintenance of gut homeostasis, mediation of IBD occurrence, and potential application to IBD therapy

    Identification of ZDHHC14 as a novel human tumour suppressor gene

    Get PDF
    Genomic changes affecting tumour suppressor genes are fundamental to cancer. We applied SNP array analysis to a panel of testicular germ cell tumours to search for novel tumour suppressor genes and identified a frequent small deletion on 6q25.3 affecting just one gene, ZDHHC14. The expression of ZDHHC14, a putative protein palmitoyltransferase with unknown cellular function, was decreased at both RNA and protein levels in testicular germ cell tumours. ZDHHC14 expression was also significantly decreased in a panel of prostate cancer samples and cell lines. In addition to our findings of genetic and protein expression changes in clinical samples, inducible overexpression of ZDHHC14 led to reduced cell viability and increased apoptosis through the classic caspase-dependent apoptotic pathway and heterozygous knockout of ZDHHC14 decreased cell colony formation ability. Finally, we confirmed our in vitro findings of the tumour suppressor role of ZDHHC14 in a mouse xenograft model, showing that overexpression of ZDHHC14 inhibits tumourigenesis. Thus, we have identified a novel tumour suppressor gene that is commonly down-regulated in testicular germ cell tumours and prostate cancer, as well as given insight into the cellular functional role of ZDHHC14, a potential protein palmitoyltransferase that may play a key protective role in cancer

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004
    • …
    corecore